Stefano Ermon* Carla Gomes* Ashish Sabharwal ${ }^{+}$Bart Selman*
 *Computer Science Department, Cornell University, USA
 ${ }^{+}$IBM Watson Research Center, NY, USA

Partition Function, Density of States, and Density Propagation

Partition Function $=$ normalization constant for factored probabilistic models EXAMPLE: factor graph representation
$p(x, \Theta)=\frac{1}{Z(\Theta)} \exp (\Theta \cdot \phi(x)) \quad Z\left(\Theta^{*}\right)=\sum_{x \in \mathcal{X}} \exp \left(\Theta^{*} \cdot \phi(x)\right)$
sum over exponentially many states \longrightarrow hard to compute

Density of States [Wang et al., Ermon et al.]:
Distribution that for any likelihood value, gives the number of configurations with that probability
$n(E, \Theta)=\sum_{x \in \mathcal{X}} \delta(E-\Theta \cdot \phi(x))$
one Dirac delta for each possible variable assignment x , centered at its energy
assign ment x, centered at its energy
partition of the set of all possible configurations (according to energy)

(1) Density Propagation (DP): a new message passing algorithm to compute the density of states of tree-structured models Message Updates:
$m_{i \rightarrow a}\left(x_{i}\right)=\bigotimes_{b \rightarrow i} m_{b}\left(x_{i}\right) \quad$ Convolution $\begin{gathered}\text { (sum of conditionally independent RV) }\end{gathered}$
$m_{a \rightarrow i}\left(x_{i}\right)=\sum_{\{x\}_{\alpha \backslash i}}\left(\bigotimes_{j \in \mathcal{N}(a) \backslash i} m_{j \rightarrow a}\left(x_{j}\right)\right) \otimes \delta_{E_{\alpha}\left(\{x\}_{\alpha}\right)}$

DP messages are distributions

The density of states gives the partition function $Z\left(\Theta^{*}\right)=\left\|n\left(E, \Theta^{*}\right) \exp (E)\right\|_{1}$
DP generalizes Belief-Propagation and Max-Product

Max Product and Belief Propagation message updates can be derived from DP messages.

Belief Propagation (BP) only considers "total weight"
$\mu_{i \rightarrow j}\left(x_{j}\right)=\left\|m_{i \rightarrow j}\left(x_{j}\right)(E) \exp (E)\right\|_{1}=\int_{\mathbb{R}} m_{i \rightarrow j}\left(x_{j}\right)(E) \exp (E) \mathrm{d} E$ e.g., $2+6 \exp (2)+6 \exp (4)+2 \exp (6)$

Max Product (MP) only considers the highest probability entry e.g. $\exp (6)$
(2) DP messages carry strictly more information than BP and MP

Improved, Matching-Based Bounds on the Partition Function
density of states of tractable subproblems Θ_{1} and Θ_{2} Decomposition of loopy models into tractable families [Wainwright et al., Liu et al.]:

Example: 2×2 Ising model decomposed as $\Theta^{*}=\sum_{i=1}^{n} \gamma_{i} \Theta_{i}$

$\begin{array}{ccc}\text { Min } & \text { (unknown) matching } & \text { Max } \\ \text { Matching } & \text { Sum of edge weights } & \text { Matching }\end{array}$
(f)
(c)
(3) For any decomposition, new matching-based upper and lower bounds provably stronger than convexity-based ones (when Holder inequality is strict)

Experimental results

(a) 15×15 grid, attractive

Max-Matching based upper bound always improves over the convexity based one (TRWBP)
(b) 10×10 grid, mixed.

(c) 15-Clique, attractive

(d) 15-Clique, mixed.

